第15章 奇异值分解

VCG

2025-11-07

引言

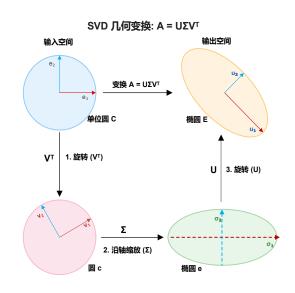
- ▶SVD是线性代数中最重要、最优美的概念之一
- ▶不仅是一个数学工具,更是一种看待数据和变换的哲学
- ▶其应用贯穿机器学习、信号处理、推荐系统等几乎所有数据科学领域

线性变换的本质?

- ightharpoonup一个矩阵 A 可以将一个向量 m x 变换为另一个向量 m y = Ax
 - ▶变换过程可能看起来非常复杂,它可能既有旋转,又有拉伸,还有切变...
- ▶我们能否找到一种"通用语言"来描述任何矩阵所代表的线性变换?
- ▶是否存在一种方法,能将这个复杂的变换分解为一系列最简单的、最基础的操作?

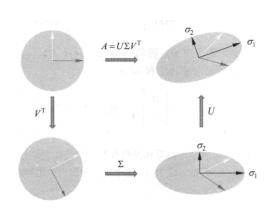
线性变换的几何含义: 变换一个单位圆

- ▶线性变换(矩阵A)作用于单位圆C(内部均匀点云)
 - ▶当矩阵 A 作用于整个圆时,圆C变换成椭圆E
 - \triangleright C的协方差矩阵为I,变换后的协方差矩阵为S = AA^T
 - ▶S对称矩阵, 正交对角化 => 输出空间椭圆E(长短轴为S特征向量方向)
 - ▶椭圆E,输出空间(长短轴为XY轴的)椭圆e旋转(矩阵U)而来
 - ho椭圆e,输入空间圆c对角阵(Σ ,对角线元素为S特征值)变换而来
 - \triangleright A = UΣV^T => A^T = VΣ^TU^T, 类似的
 - \triangleright C的协方差矩阵为I,变换后的协方差矩阵为S = A^TA
 - ▶S对称矩阵, 正交对角化 => 输入空间椭圆E(长短轴为S特征向量方向)
 - ▶椭圆E. 由输入空间(长短轴为XY轴的)椭圆e旋转(矩阵V)而来
 - ightharpoonup椭圆e,由输出空间圆c对角阵(Σ,对角线为S的特征值)而来 $ightharpoonup AA^TAA^TA$ 的非零特征值是一样的!



矩阵变换分解变换"三部曲"

- ▶SVD表明,任何复杂的线性变换 A,都可以分解为三个纯粹的步骤
 - \triangleright 一次旋转 (或反射) \mathbf{V}^T
 - \triangleright 在输入空间,将标准坐标系旋转,对齐到我们找到的那组特殊正交基 $\{\mathbf{v}_i\}$ 上
 - ▶一次纯粹的沿轴缩放 Σ
 - \triangleright 在新的坐标系下,沿着每个轴进行独立的拉伸或压缩。缩放的比例为奇异值 σ_i 。并转换到输出空间
 - ▶另一次旋转 (或反射) U
 - ightharpoonup在输出空间,将缩放后的坐标系旋转,对齐到输出椭圆的主轴基 $\{{f u}_i\}$ 上
- \triangleright SVD: $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
 - $\triangleright V^T$: 输入空间的旋转
 - $\triangleright \Sigma$: 沿轴缩放,并转换到输出空间
 - ▶U: 输出空间的旋转



奇异值分解

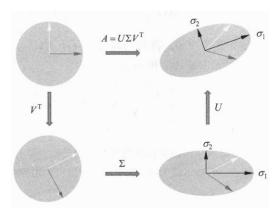
任何复杂的线性变换(矩阵A),无论它看起来多么扭曲和复杂,其本质都可以被SVD分解为这三个步骤:一个输入空间的旋转 (VT),一次纯粹的沿轴缩放 (Σ),以及一个输出空间的旋转 (U)。SVD就是找到了完成这个优雅过程的精确"蓝图"

奇异值分解定义

▶对于任何一个 $m \times n$ 的实矩阵 A, 其奇异值分解 (SVD) 形式为:

$$\mathbf{A}_{m\times n} = \mathbf{U}_{m\times m} \mathbf{\Sigma}_{m\times n} (\mathbf{V}_{n\times n})^T$$

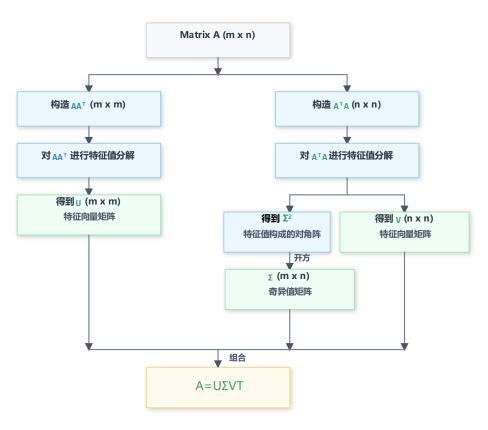
- ➤U (m×m): 左奇异向量 (Left Singular Vectors)
 - ▶正交矩阵 $(\mathbf{U}^T\mathbf{U} = \mathbf{I})$
 - ▶列向量 {u_i} 构成了输出空间的一组标准正交基
- ▶V (n×n): 右奇异向量 (Right Singular Vectors)
 - ▶正交矩阵 $(\mathbf{V}^T\mathbf{V} = \mathbf{I})$
 - \triangleright 列向量 $\{\mathbf{v}_i\}$ 构成了输入空间的一组标准正交基
- ▶Σ (*m* × *n*): 奇异值矩阵 (Singular Values)
 - ▶对角矩阵(非方阵时为"伪对角")
 - ▶对角线上元素 $\sigma_1 \ge \sigma_2 \ge ... \ge 0$ 称为奇异值,其大小代表了数据在对应方向上的"重要性"/"能量"



如何计算SVD?

▶算法

SVD 分解过程



如何计算SVD?

▶ 计算 V 和 Σ

- ▶构造矩阵 $\mathbf{A}^T\mathbf{A}$ (一个 $n \times n$ 的对称矩阵)
- $A^T A = (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T)^T (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T) = \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} (\mathbf{\Sigma}^T \mathbf{\Sigma}) \mathbf{V}^T$
 - \triangleright V 的列向量就是 A^TA 的特征向量
 - ▶奇异值的平方 σ_i^2 就是 $\mathbf{A}^T\mathbf{A}$ 的特征值

▶计算 U

- $\triangleright \mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i$
- ▶或者
 - \rightarrow 类似地,构造矩阵 AA^T (一个 $m \times m$ 的对称矩阵)
 - $\triangleright AA^T = U(\Sigma \Sigma^T)U^T$

▶结论

- \triangleright **U** 的列向量就是 AA^T 的特征向量
- ightharpoonup计算流程:对 A^TA 进行特征值分解得到 V 和 Σ ,然后可以通过关系 $Av_i = \sigma_i u_i$ 求出 U

SVD与PCA

- ▶PCA的目标是找到数据协方差矩阵 $S = \frac{1}{N-1}X^TX$ 的特征向量
- ▶SVD的视角
 - ightharpoonup对中心化数据 X 进行SVD (X = UΣV^T), 那么 X^TX = V(Σ^TΣ)V^T
 - ▶意味着
 - ▶PCA的主成分就是SVD的右奇异向量 V
 - ightharpoonup降维后的数据(主成分得分)可以通过 m Z = XV = UΣ 直接得到
- ▶为什么有时用SVD实现PCA?
 - \triangleright 直接对 X 做SVD比先计算 X^TX 再做特征值分解更稳定
 - ▶对于"维度 > 样本数"的宽表数据, SVD更高效, 且有其它的优化方法

总结

- ▶SVD的本质
 - ▶将任何线性变换分解为旋转-缩放-旋转三部曲
- ▶几何意义
 - ▶找到了输入空间和输出空间中的两组特殊正交基,使得变换在这两组基之间只有缩放
- ▶计算核心
 - \triangleright 通过对 A^TA 和 AA^T 进行特征值分解来找到SVD的各个组成部分
- ▶最强大的应用
 - ▶低秩近似。通过保留最大的奇异值,实现数据压缩、去噪和核心模式提取
- ▶与PCA的关系
 - ▶SVD为PCA提供了一种更通用、更稳健的计算途径

Thanks

奇异值分解的另一种解释:外积展开形式

 $A=U\Sigma V^*T=\sigma_1 u_1 v_1^*T+\sigma_2 u_2 v_2^*T+\cdots+\sigma_n u_n v_n^*T$ 变换视角,把A看作一系列变换组合而成数据视角,把A看作一系列(投影)分量组合而成

SVD最强大的应用: 低秩近似

▶SVD的外积展开形式:

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \, \mathbf{u}_i \mathbf{v}_i^T$$

其中r是矩阵的秩

- \triangleright 直观理解:任何矩阵都可以看作是多个"秩为1"的简单矩阵 $(\mathbf{u}_i\mathbf{v}_i^T)$ 的加权和
- \triangleright 权重就是奇异值 σ_i
- ➤低秩近似 (Low-Rank Approximation):
 - \triangleright 由于奇异值是降序排列的 ($\sigma_1 \ge \sigma_2 \ge ...$),最大的几个奇异值包含了矩阵最主要的信息
 - ▶我们可以通过只保留前 k 个最大的奇异值来近似原始矩阵:

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \, \mathbf{u}_i \mathbf{v}_i^T \quad (k < r)$$

ightharpoonup Eckart-Young定理: A_k 是在所有秩为 k 的矩阵中,与原始矩阵 A 最接近的矩阵(在 Frobenius范数意义下)

低秩近似的威力:图像压缩实例

- ▶一张灰度图像可以看作一个矩阵,每个像素值是矩阵的一个元素
- ➤原始图像 (秩 *r*)
 - \triangleright 存储需要 $m \times n$ 个数值
- ➤SVD近似 (秩 k)
 - \triangleright 我们只需要存储 k 个奇异值、 k 个 \mathbf{u} 向量 (每个 m 维)、 k 个 \mathbf{v} 向量 (每个 n 维)
 - \blacktriangleright 总存储量为 $k + k \times m + k \times n = k(1 + m + n)$
 - ▶当 $k \ll r$ 时,可以实现巨大的数据压缩
- ▶结论: SVD能够抓住数据中最核心的"模式",并用极少的成分来重构它

SVD的两种实用形式

- ➤完全SVD (Full SVD)
 - $\triangleright \mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \mathbf{\Sigma}_{m \times n} \mathbf{V}_{n \times n}^T$
 - \triangleright U 和 V 都是方阵, Σ 的尺寸与 A 相同,可能包含很多零。在数学上完备,但在计算上冗余
- ➤紧SVD (Compact SVD / Thin SVD)
 - $\triangleright \mathbf{A}_{m \times n} = \mathbf{U}_{m \times r} \mathbf{\Sigma}_{r \times r} \mathbf{V}_{n \times r}^T$
 - \triangleright 只保留与非零奇异值对应的 r 个奇异向量
 - \triangleright **Σ** 变成了 $r \times r$ 的方阵。这是无损压缩
- ▶截断SVD (Truncated SVD)
 - $\triangleright \mathbf{A}_{m \times n} \approx \mathbf{U}_{m \times k} \mathbf{\Sigma}_{k \times k} \mathbf{V}_{n \times k}^T \quad (k < r)$
 - ▶只保留前 k 个最大的奇异值和对应的奇异向量
 - ▶这就是我们前面讲的低秩近似,是有损压缩,也是SVD在机器学习中最常用的形式